
Impact of 3D Bookmarks on Navigation and Streaming
in a Networked Virtual Environment

Thomas Forgione
Université de Toulouse - IRIT
thomas.forgione@irit.fr

Axel Carlier
Université de Toulouse - IRIT
axel.carlier@enseeiht.fr

Géraldine Morin
Université de Toulouse - IRIT

morin@enseeiht.fr

Wei Tsang Ooi
National Univ. of Singapore

weitsang@nus.edu.sg

Vincent Charvillat
Université de Toulouse - IRIT

charvi@enseeiht.fr

ABSTRACT

A 3D bookmark in a networked virtual environment (NVE) pro-

vides a navigation aid, allowing the user to move quickly from its

current viewpoint to a bookmarked viewpoint by simply clicking

on the bookmark. In this paper, we first validate the positive im-

pact that 3D bookmarks have in easing navigation in a 3D scene.

Then, we show that, in the context of a NVE that streams content on

demand from server to client, navigating with bookmarks leads to

lower rendering quality at the bookmarked viewpoint, due to lower

locality of data. We then investigate into how prefetching the 3D

data at the bookmarks and precomputation of visible faces at the

bookmarks help to improve the rendering quality.

CCS Concepts

•Information systems → Multimedia streaming; •Computing

methodologies → Virtual reality;

Keywords

3D Bookmarks, 3D Navigation Aid, Networked Virtual Environ-

ment, Prefetching, 3D Streaming

1. INTRODUCTION
With the progress in data acquisition and modeling techniques,

networked virtual environments, or NVE, are increasing in scale.

For instance, Gaillard et al. [12] reported that the 3D scene for

the city of Lyon takes more than 30 GB of data. It has become

impractical to download the whole 3D scene before the user begins

to navigate in the scene. A more common approach is to stream the

required 3D content (models and textures) on demand, as the user

moves around the scene. Downloading the required 3D content the

moment the user demands it, however, leads to “popping effect”

where 3D objects materialize suddenly in the view of the user, due

to the latency between requesting for and receiving the 3D content

from the server [26]. Such latency can be quite high – Varvello et al.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

reported a median of about 30 seconds for all 3D data in an avatar’s

surrounding to be loaded in high density Second Life regions under

their experimental network conditions, due to a bottleneck at the

server [28].

For a smoother user experience, NVE typically prefetch 3D con-

tent, so that a 3D object is readily available for rendering when the

object falls into the view of the user. Efficient prefetching, however,

requires the client or the server to predict where the user would

navigate to in the future and retrieve the corresponding 3D content

before the user reaches there. In a typical scenario, users navigate

along a continuous path in a NVE, leading to a significant overlap

between the 3D content visible from the user’s known current posi-

tion and possible next positions (i.e., spatial data locality). Further-

more, there is a significant overlap between the 3D content visible

from the current point in time to the next point in time (i.e., tempo-

ral data locality). Both forms of locality lead to content overlaps,

thus making a correct prediction easier and a wrong prediction less

costly. 3D content overlaps are particularly common in a NVE with

open space, such as a 3D archaeological site or a 3D city.

Navigating in NVE with a large virtual space (most times through

a 2D interface) is sometimes cumbersome. In particular, a user may

have difficulties reaching the right place to find information. The

content provider of the NVE may want to highlight certain interest-

ing features for the users to view and experience, such as a vantage

point in a city, an excavation at an archaeological site, or an exhibit

in a museum. To allow users to easily find these interesting loca-

tions within the NVE, 3D bookmarks or bookmarks for short, can

be provided. A bookmark is simply a 3D virtual camera (with po-

sition and camera parameters) predefined by the content provider,

and can be presented to users in different ways, including as a text

link (URL), a thumbnail image, or a 3D object embedded within

the NVE itself.

When users click on a bookmark, NVEs commonly provide a

“fly-to” animation to transit the camera from the current viewpoint

to the destination [21, 24] to help orient the users within the 3D

space. Clicking on a bookmark to fly to another viewpoint leads to

reduced data locality. The 3D content at the bookmarked destina-

tion viewpoint may overlap less with the current viewpoint. In the

worst case, the 3D objects corresponding to the current and desti-

nation viewpoints can be completely disjoint. Such movement to a

bookmark may lead to a discovery latency [28], in which users have

to wait for the 3D content for the new viewpoint to be loaded and

displayed. An analogy for this situation, in the context of video

streaming, is seeking into a segment of video that has not been

prefetched yet.

10.1145/1235

In this paper, we explore the impact of bookmarks on NVE nav-

igation and streaming, and make several contributions. First, we

conducted a crowdsourcing experiment where 51 participants navi-

gated in 3 virtual scenes to complete a task. This experiment serves

two purposes: (i) it validates our intuition that bookmarks signif-

icantly reduce the number of interactions and navigation time (in

average the time needed to complete the task for users with book-

marks is half the time for users without bookmarks); (ii) it produces

a set of user interaction traces that we use for subsequent simula-

tion experiments. Second, we quantified the effect of bookmarking

on prefetching and visual quality in our experiments. We showed

that, without prefetching, the number of correctly rendered pixels

right after clicking on bookmarks can drop up to 10% on average.

If we prefetch the 3D content from the bookmarks according to the

probability of access, we do not limit this drop by more than 5%.

Finally, we proposed a method to improve the visual quality after

clicking on bookmarks, by exploiting the fact that the visible faces

at the bookmark can be precomputed, and by fetching the visible

faces only after a bookmark is clicked. We showed that, if the fetch-

ing is done during the 1-2 seconds of the “fly-to” camera movement

from the current viewpoint to the bookmarked viewpoint, it suffices

to increase the number of correctly rendered pixels to more than

20%, without wasting bandwidth on prefetching. Our key mes-

sage is that, in addition to easing navigation, bookmarking allows

precomputation of visible faces and can significantly reduce inter-

action latency, without resorting to prefetching, which may waste

bandwidth by prefetching 3D data that will not be needed.

The rest of the papers consists of the following sections. Section

2 discusses the related work in 3D navigation and prefetching. This

is followed by Section 3, which describes the 3D bookmarks that

we use in our work, along with our experiments to validate the

usefulness of bookmarking. Section 4 describes the streaming and

prefetching mechanisms that we used to simulate our experiments

as well as our main findings. Finally, we conclude in Section 5.

2. RELATED WORK

2.1 3D Bookmarks and Navigation Aids
Devising an ergonomic technique for browsing 3D environments

through a 2D interface is difficult. Controlling the viewpoint in 3D

(6 DOFs) with 2D devices is not only inherently challenging but

also strongly task-dependent. In their recent review [16], Jankowski

and Hachet distinguish between several types of camera movements:

general movements for exploration (e.g., navigation with no ex-

plicit target), targeted movements (e.g., searching and/or examin-

ing a model in detail), specified trajectory (e.g., a cinematographic

camera path), etc. For each type of movement, specialized 3D in-

teraction techniques can be designed. In most cases, rotating, pan-

ning, and zooming movements are required, and users are conse-

quently forced to switch back and forth among several navigation

modes, leading to interactions that are too complicated overall for a

layperson. Navigation aids and smart widgets are required and sub-

ject to research efforts both in 3D companies (see sketchfab.com,

cl3ver.com among others) and in academia, as reported below.

Translating and rotating the camera can be simply specified by

a lookat point. This is often known as point-of-interest movement

(or go-to, fly-to interactions) [21]. Given such a point, the camera

automatically animates from its current position to a new position

that looks at the specified point. One key issue of these techniques

is to correctly orient the camera at destination. In Unicam [29],

the so-called click-to-focus strategy automatically chooses the des-

tination viewpoint depending on 3D orientations around the contact

point. The recent Drag’n Go interaction [22] also hits a destination

point while offering control on speed and position along the camera

path. This 3D interaction is designed in the screen space (it is typ-

ically a mouse-based camera control), where cursor’s movements

are mapped to camera movements following the same direction as

the on-screen optical-flow.

Some 3D browsers provide a viewpoint menu offering a choice

of viewpoints [27], [3]. Authors of 3D scenes can place several

viewpoints (typically for each POI) in order to allow easy navi-

gation for users, who can then easily navigate from viewpoint to

viewpoint just by selecting a menu item. Such viewpoints can be

either static, or dynamically adapted: the authors from [15] report

that users clearly prefer navigating in 3D using a menu with ani-

mated viewpoints than with static ones.

Early 3D VRML environments [24] offer 3D bookmarks with

animated transitions between bookmarked views. These transitions

prevent disorientation since users see how they got there. Hyper-

links can also ease rapid movements between distant viewpoints

and naturally support non-linear and non-continuous access to 3D

content. Navigating with 3D hyperlinks is potentially faster, but

is likely to cause disorientation, as shown by the work of Rud-

dle et al. [25]. Eno et al. [11] examine explicit landmark links as

well as implicit avatar-chosen links in Second Life. These authors

point out that linking is appreciated by users and that easing linking

would likely result in a richer user experience. In [15], the Dual-

Mode User Interface (DMUI) coordinates and links hypertext to 3D

graphics in order to access information in a 3D space. Our results

are consistent with the results on 3D hyperlinks, as we showed that

in our NVE 3D bookmarks also improve users performance.

The use of in-scene 3D navigation widgets can also facilitate

3D navigation tasks. Chittaro and Venkataraman [10] propose and

evaluate 2D and 3D maps as navigation aids for complex virtual

buildings and find that the 2D navigation aid outperforms the 3D

one for searching tasks. The ViewCube widget [17] serves as a

proxy for the 3D scene and offers viewpoint switching between 26

views while clearly indicating associated 3D orientations. Inter-

active 3D arrows that point to objects of interest have also been

proposed as navigation aids by Chittaro and Burigat [9, 2]: when

clicked, the arrows transfer the viewpoint to the destination through

a simulated walk or a faster flight. The 3D arrows update and re-

orientate as the user moves around. We use a similar technique in

this paper.

2.2 Prefetching in NVE
We now present several related work on prefetching of 3D con-

tent in NVE. The general prefetching problem can be described as

follows: what are the data most likely to be accessed by the user in

the near future, and in what order do we download the data?

The simplest answer to the first question assumes that the user

would likely access content close to the current position, thus would

retrieve the 3D content within a given radius of the user (also known

as the area of interest, or AoI). This approach, implemented in Sec-

ond Life and several other NVEs (e.g., [20]), only depends on the

location of the avatar, not on its viewing direction. It exploits spa-

tial locality and works well for any continuous movement of the

user, including turning. Once the set of objects that are likely to

be accessed by the user is determined, the next question is in what

order should these objects be retrieved. A simple approach is to

retrieve the objects based on distance: the spatial distance from the

user’s virtual location and rotational distance from the user’s view.

Other approaches consider the movement of the user and attempt

to predict where the user will move to in the future. Chan et al. [6]

and Li et al. [19] predict the direction of movement from the user’s

mouse input pattern. The predicted mouse movement direction is

sketchfab.com
cl3ver.com

then mapped to the navigation path in the NVE. Objects that fall

in the predicted path are then prefetched. CyberWalk [8] uses an

exponentially weighted moving average of past movement vectors,

adjusted with the residual of prediction, to predict the next location

of the user.

Hung et al. [14] cluster the navigation paths of users and use

them to predict the future navigation paths. Objects that fall within

the predicted navigation path are prefetched. All these approaches

work well for a navigation path that is continuous – once the user

clicks on a bookmark and jumps to a new location, the path is no

longer continuous and the prediction becomes wrong.

Moving beyond ordering objects to prefetch based on distance

only, Park et al. [23] propose to predict the user’s interest in an

object as well. Objects within AoI are then retrieved in decreasing

order of predicted interest value to the user. Zhou et al. [31] use

another approach. Instead of predicting the location or movement

of the user, they directly predict which objects will be accessed,

through learning from the object access patterns.

2.3 Prefetching in Other Interactive Media
We briefly survey other research on prefetching that focuses on

non-continuous interaction in other types of media.

In the context of navigating in a video, a recent work by Carlier

et al. [4] prefetches video chunks located after bookmarks along

the video timeline. Their work, however, focuses on changing the

user behavior to improve the prefetching hit rate, by depicting the

state of the prefetched buffer to the user. Carlier et al. also consider

prefetching in the context of zoomable videos in an earlier work [5],

and showed that predicting which region of videos the user will

zoom into or pan to by analyzing interaction traces from users is

difficult.

Prefetching for navigation through a sequence of short online

videos is considered by Khemmarat et al in [18]. Each switch from

the current video to the next can be treated as a non-continuous in-

teraction. The authors proposed recommendation-aware prefetch-

ing – to prefetch the prefix of videos from the search result list and

related video list, as these videos are likely to be of interest to the

user and other users from the same community.

Grigoras et al. [13] consider the problem of prefetching in the

context of a hypervideo; non-continuous interaction happens when

users click on a hyperlink in the video. They propose a formal

framework that captures the click probability, the bandwidth, and

the bit rate of videos as a Markov decision problem, and derive an

optimal prefetching policy.

Zhao and Ooi [30] propose Joserlin, a generic framework for

prefetching that applies to any non-continuous media, but focuses

on peer-to-peer streaming applications. They do not predict which

item to prefetch, but rather focus on how to schedule the prefetch

request and response.

There is a huge body of work on prefetching Web objects in the

context of the World Wide Web. Interested readers can refer to

numerous surveys written on this topic (e.g., [1]).

3. IMPACT OF 3D BOOKMARKS ON NAV-

IGATION
We now describe an experiment that we conducted on 51 par-

ticipants, with two goals in mind. First, we want to measure the

impact of 3D bookmarks on navigation within an NVE. Second,

we want to collect traces from the users so that we can replay them

for reproducible experiments for comparing streaming strategies in

Section 4.

3.1 Our NVE
To ease the deployment of our experiments to users in distributed

locations on a crowdsourcing platform, we implement a simple

Web-based NVE client using Three.js1. The NVE server is imple-

mented with node.js2. The NVE server streams a 3D scene to the

client; the client renders the scene as the 3D content are received.

The user can navigate within the NVE in the following way;

he/she can translate the camera using the arrow keys along four

directions: forward, backward, to the left, and to the right. Alterna-

tively, the keys W, A, S and D can also be used for the same actions.

This choice was inspired by 3D video games, which often use these

keys in conjunction with the mouse to move an avatar. The virtual

camera can rotate in four different directions using the keys I, K, J

and L. The user can also rotate the camera by dragging the mouse

in the desired direction. Finally, following the UI of popular 3D

games, we also give users the possibility to lock their pointer and

use their mouse as a virtual camera. The mouse movement con-

trols the camera rotation. The user can always choose to lock the

pointer, or unlock it using the escape key. The interface also in-

cludes a button to reset the camera back to the starting position in

the scene.

3.2 3D Bookmarks
Our NVE supports 3D bookmarks. A 3D bookmark, or book-

mark for short, is simply a fixed camera location (in 3D space),

a view direction, and a focal. Bookmarks visible from the user’s

current viewpoint are shown as 3D objects in the scene. Figure 1

depicts some bookmarks from our NVE.

The user can click on a bookmark object to automatically move

and align its viewpoint to that of the bookmark. The movement fol-

lows a Hermite curve joining the current viewpoint to the viewpoint

of the bookmark. The tangent of the curve is the view direction.

The user can hover the mouse pointer over a bookmark object to

see a thumbnail view of the 3D scene as seen from the bookmark.

(Figure 1, bottom left).

In our work, we consider two different possibilities for display-

ing bookmarks: viewports (Figure 1 top left) and arrows (Figure

1 top right). A viewport is displayed as a pyramid where the top

corresponds to the optical center of its viewpoint and the base cor-

responds to its image plane. The arrows are view dependent. The

bottom of the arrow turns towards the current position, to better

visualize the relative position of the bookmark.

Bookmarks allow the user to achieve a large movement within

the 3D environment using a single action (a mouse click). As book-

marks are part of the scene, they are visible only when not hidden

by other objects from the scene. We chose size and colors that are

salient enough to be easily seen, but not too large to limit the oc-

clusion of regions within the scene. When reaching the bookmark,

the corresponding arrow or viewport is not visible anymore, and

subsequently will appear in a different color, to indicate that it has

been clicked (similar to Web links).

3.3 User Study
We now describe in details our experimental setup and the user

study that we conducted on 3D navigation.

Models. We use four 3D scenes (one for the tutorial and three

for the actual experiments) that represent recreated scenes from a

famous video game. Those models are light (a few thousand of

triangles per model) and are sent before the experiment starts. We

keep the models small so that users can perform the task with ac-

1http://threejs.org
2http://nodejs.org

Figure 1: 3D bookmarks propose to move to a new viewpoint. A 3D bookmark may be displayed as a viewport (top-left) or as an

arrow (top-right). Bottom-Left: a preview is shown when the user places the mouse on the bookmark; when the user clicks on the

bookmark, his viewpoint moves to the indicated viewpoint. Bottom-Right: a global view with a bookmark and a coin hidden behind

the curtain.

ceptable latency from any country using a decent Internet connec-

tion. Our NVE does not actually stream the 3D content for these

experiments, in order to avoid unreliable conditions caused by the

network bandwidth variation –which might affect how the users in-

teract.

Task design. Since we are interested in studying how efficiently

users navigate in the 3D scene, we ask our participants to complete

a task that forces them to visit, at least partially, various regions

in the scene. To this end, we hide a set of 8 coins on the scene:

participants are asked to collect the coins by clicking on them. In

order to avoid any bias due to the coins position, we predefined 50

possible coin locations all around the scene, and randomly select

8 out of these 50 positions each time a new participant starts the

experiment.

Experiment. Participants are first presented with an initial screen

to collect some preliminary information: age, gender, the last time

they played 3D video games, and self-rated 3D gaming skills. We

ask those questions because we believe that someone who is used

to play 3D video games should browse the scene more easily, and

thus, may not need to use our bookmarks.

Then, the participants go through a tutorial to learn how the UI

works, and how to complete the task. The different interactions

(keyboard navigation, mouse navigation, bookmarks interaction)

are progressively introduced to participants, and the tutorial fin-

ishes once the participant completes an easy version of the task.

The tutorial is always performed on the same scene.

Then, each participant has to complete the task three times. Each

task is performed on a different scene, with a different interface.

Three interfaces are used. A NoBM interface lets the participant

navigates without any bookmarks. The other two interfaces allow

a participant to move using bookmarks displayed as viewports (de-

noted as VP) and arrows (denoted as Ar) respectively.

The coins are chosen randomly, based on the coin configurations

that were used by previous participants: if another participant has

done an experiment with a certain set of coins, on a certain scene,

with a certain type of bookmarks, the current participant will do the

experiment with the same set of coins, on the same scene, but with

a different type of bookmarks. This policy allows us to limit the

bias that could be caused by coin locations.

Once a participant has found all coins, a button is shown on the

interface to let the participant move to the next step. Alternatively,

this button may appear one minute after the sixth coin was found.

This means that a user is authorized to move on without completing

the task, in order to avoid potential frustration caused by not finding

the remaining two coins.

After completing the three tasks, the participants have to answer

a set of questions about their experience with the bookmarks (we

refer to the bookmarks as recommendations in the experiments).

Table 1 shows the list of questions.

Participants. The participants were recruited on microwork-

ers.com, a crowdsourcing website. There were 51 participants (36

men and 15 women), who are in average 30.44 years old.

3.4 Experimental Results
We now present the results from our user study, focusing on

whether bookmarks help users navigating the 3D scene.

3.4.1 Questionnaire

We had 51 responses to the Questionnaire. The answers are sum-

marized in Table 1. Note that not all questions were answered by

all participants.

Questions Answers

1 What was the difficulty level WITHOUT recommendation? 3.04 / 5 ±0.31 (99% confidence interval)

2 What was the difficulty level WITH recommendation? 2.15 / 5 ±0.30 (99% confidence interval)

3 Did the recommendations help you to find the coins? 42 Yes, 5 No

4 Did the recommendations help you to browse the scene? 49 Yes, 2 No

5 Do you think recommendations can be helpful? 49 Yes, 2 No

6 Which recommendation style do you prefer and why? 32 Ar , 7 VP
7 Did you enjoy this ? 36 Yes, 3 No

Table 1: List of questions in the questionnaire and summary of answers.

The participants seem to find the task to be of average difficulty

(3.04/5) when they have no bookmarks to help their navigation.

They judge the task to be easier in average (2.15/5) with book-

marks, which indicates that bookmarks ease the completion of the

task.

Almost all users (49 out of 51) think the bookmarks are useful

for browsing the scene, and most users (42 out of 51) think book-

marks are also useful to complete the given task. This is slightly

in contradiction with our setup; even if coins may appear in some

bookmarked viewpoints (which is normal since the viewpoints have

been chosen to get the most complete coverage of the scene), most

of the time no coin is visible in a given bookmark, and there are

always coins that are invisible from all bookmarks.

The strongest result is that almost all users (49 out of 51) find

bookmarks to be helpful. In addition, users seem to have a prefer-

ence for Ar against VP (32 against 7).

3.4.2 Analysis of Interactions

BM type #Exp Mean # coins # completed Mean time

NoBM 51 7.08 18 4:16 min

Ar 51 7.39 27 2:33 min

VP 51 7.51 30 2:16 min

Table 2: Analysis of the sessions length and users success by

type of bookmarks

Table 2 shows basic statistics on task completion given the type

of bookmarks that were provided to the participants.

First, we can see that without bookmarks, only a little bit more

than a third of the users are able to complete the task, i.e. find all 8

coins. In average, these users find just above 7 coins, and spend 4

minutes and 16 seconds to do it.

Interestingly, and regardless of the bookmark type, users who

have bookmarks complete the task more than half of the time, and

spend in average significantly less time to complete the task: 2

minutes and 16 seconds using VP and 2 minutes and 33 seconds

using Ar . Although VP seem to help users a little bit more in

completing the task than Ar , the performance difference between

both types of bookmarks is not significant enough to conclude on

which type of bookmarks is best.

The difference between an interface with bookmarks and with-

out bookmarks, however, is very clear. Users tend to complete the

task more efficiently using bookmarks: more users actually finish

the task, and it takes them half the time to do so. We computed

99% confidence intervals on the results introduced in Table 2. We

found that the difference in mean number of coins collected with

and without bookmarks is not high enough to be statistically signif-

icant: we would need more experiments to reach the significance.

The mean time spent on the task however is statistically significant.

BM type Total distance Distance to a bookmark Ratio

NoBM 610.80 0 0%

Ar 586.30 369.77 63%

VP 546.96 332.72 61 %

Table 3: Analysis of the length of the paths by type of book-

marks

Table 3 presents the length of the paths traveled by users in the

scenes. Although users tend to spend less time on the tasks when

they do not have bookmarks, they travel pretty much the same dis-

tance as without bookmarks. As a consequence, they visit the scene

faster in average with bookmarks, than without bookmarks. The ta-

ble shows that this higher speed is due to the bookmarks, as more

than 60% of the distance traveled by users with bookmarks happens

when users click on bookmarks and fly to the destination.

3.4.3 Discussion

In the previous paragraphs, we have shown how bookmarks are

well perceived by users (looking at the questionnaire answers). We

also showed that users tend to be more efficient in completing the

task when they have bookmarks than when they do not.

We can say that bookmarks have a positive effect on navigation

within the 3D scene, but since users move, on average, twice as

fast, it might have a negative impact on the streaming of objects to

the client.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

n
g

le
s
 o

f
th

e
 S

c
e

n
e

Time (in s)

Without bookmarks
With bookmarks

Figure 2: Comparison of the triangles queried after a certain

time

Figure 2 shows a CDF of the percentage of 3D mesh triangles in

the scene that have been queried by users after a certain time. We

plotted this same curve for users with and without bookmarks. As

expected, the fact that the users can browse the scene significantly

quicker with bookmarks reflects on the demand on the 3D con-

tent. Users need more triangles more quickly, which either leads

to more demand on network bandwidth, or if the bandwidth is kept

constant, leads to fewer objects being displayed. In the next sec-

tion, we introduce experiments based on our user study traces that

show how the rendering is affected by the presence of bookmarks

and how to improve it.

The traces are online at https://github.com/tforgione/3dinterface/

releases/tag/V1 in the microTestFinal.pgsql script which

is a dump of the database at the end of the experiment.

4. IMPACT OF 3D BOOKMARKS ON

STREAMING

4.1 3D Model Streaming
In this section, we describe our implementation of a 3D model

streaming policy in our simulation. Note that the policy is differ-

ent from that we used for the crowdsourcing experiments. Recall

that in the crowdsourcing experiments, we load all the 3D con-

tent before the participants begin to navigate to remove bias due to

different network conditions. Here, we implemented a streaming

version, which we expect an actual NVE will use.

The 3D content we used are textured mesh – coded in obj file

format. As such, the data we used in our experiments are made

of several components. The geometry consists of (i) a list of ver-

tices and (ii) a list of faces, and the texture consists of (i) a list of

materials, (ii) a list of texture coordinates, and (iii) a set of tex-

ture images. In the crowdsourcing experiment, we keep the model

small since the goal is to study the user interaction. To increase the

size of the model, while keeping the same 3D scene, we subdivide

each triangle three times, successively, thereby multiplying the to-

tal number of triangles in the scene by 64. We do this to simulate a

reasonable use case with large 3D scenes. Table 4 shows that ma-

terial and texture amount at most for 3.6% of the geometry, which

justifies this choice.

When a client starts loading the Web page containing the 3D

model, the server first sends the list of materials and the texture

files. Then, the server periodically sends a fixed size chunk that

indifferently encapsulates vertices, texture coordinates, or faces. A

vertex is coded with three floats and an integer (x, y, and z coor-

dinates and the index of the vertex), a texture coordinate with two

floats and an integer (the x and y coordinates on the image and the

index of the texture coordinate), and a face with eight integers (the

index of each vertex, the index of each texture coordinate, the index

of the face and the number of the corresponding material). Conse-

quently, given the Javascript implementation of integers and floats,

we approximate each vertex and each texture coordinate to take up

32 bytes, and each face takes up 96 bytes.

Material Images Geometry

Scene 1 8 KB 72 KB 8.48 MB

Scene 2 302 KB 8 KB 8.54 MB

Scene 3 16 KB 92 KB 5.85 MB

Table 4: Respective sizes of materials, textures (images) and

geometries for the three scenes used in the user study.

During playback, the client periodically (every 200 ms in our

implementation) sends to the server its current position and camera

orientation. The server computes a sorted list of relevant faces: first

the server performs frustum culling to compute the list of faces that

intersect with the client’s viewing frustum. Then, it performs back-

face culling to discard the faces whose normals point towards the

same direction as the client’s camera orientation. The server then

sorts the filtered faces according to their distance to the camera.

Finally, the server incrementally fills in chunks with these ordered

faces. If a face depends on a vertex or a texture coordinate that

has not yet been sent, the vertex or the texture coordinate is added

to the chunk as well. When the chunk is full, the server sends it.

Both client and server algorithms are detailed in algorithms 1 and

2. The chunk size is set according to the bandwidth limit of the

server. Note that the server may send faces that are occluded and

not visible to the client, since determining visibility requires addi-

tional computation.

while streaming is not finished do

Receive chunk from the server;

Add the faces from the chunk to the model;

Update the camera (by 200ms);

Compute the rendering and evaluate the quality;

Send the position of the camera to the server;

end

Algorithm 1: Client slide algorithm

while streaming is not finished do

Receive position of the camera from the client;

Compute the list of triangles to send and sort them;

Send a chunk of a certain amount of triangles;

end

Algorithm 2: Server side algorithm

In the following, we shall denote this streaming policy culling;

in Figures 6 and 7 streaming using culling only is denoted C-only.

4.2 3D Bookmarks
We have seen (Figure 2) that navigation with bookmarks is more

demanding on the bandwidth. We want to exploit bookmarks to

improve the user’s quality of experience. For this purpose, we pro-

pose two streaming policies based on offline computation of the

relevance of 3D content to bookmarked viewpoints.

4.2.1 Visibility Determination for 3D Bookmarks

A bookmarked viewpoint is more likely to be accessed, com-

pared to other arbitrary viewpoint in the 3D scene. We exploit this

fact to perform some pre-computation on the 3D content visible

from the bookmarked viewpoint.

Recall that culling does not consider occlusion of the faces. Fur-

thermore, it prioritizes the faces according to distance from the

camera, and does not consider the actual contribution of the faces

to the rendered 2D images. Ideally, we should prioritize the faces

that occupy a bigger area in the 2D rendered images. Computing

this, however, requires rendering the scene at the server, and mea-

suring the area of each face. It is not scalable to compute this for

every viewpoint requested by the client.

However, we can pre-render the bookmarked viewpoints, since

the number of bookmarks is limited, their viewpoints are known in

advance, and they are likely to be accessed. For each bookmark,

we render offline the scene using a single color per triangle. Once

rendered, we scan the output image to find the visible triangles

(based on the color) and sort them by decreasing projected area.

https://github.com/tforgione/3dinterface/releases/tag/V1
https://github.com/tforgione/3dinterface/releases/tag/V1
https://github.com/tforgione/3dinterface/releases/download/V1/microTestFinal.pgsql

This technique is also used by [7]. Thus, when the user clicks on a

3D bookmark, this pre-computed list of faces is used by the server,

and only visible faces are sent in decreasing order of contributions

to the rendered image.

For the three scenes that we used in the experiment, we can re-

duce the number of triangles sent by 60% (over all bookmarks).

This reduction is as high as 85.7% for one particular bookmark

(from 26,886 culled triangles to 3,853 culled and visible triangles).

To illustrate the impact of sorting by projected area of faces, Fig-

ure 3 shows the quality improvement gained by sending the pre-

computed visible triangles prioritized by projected areas, compared

to using culling only prioritized by distance. The curve shows the

average quality over all bookmarks over all scenes, for a given num-

ber of triangles received. The quality is measured by the ratio of

correctly rendered pixels, comparing the fully and correctly ren-

dered image (when all 3D content is available) and the rendered

image (when content is partially available). We sample one pixel

every 100 rows and every 100 columns to compute this value. The

figure shows that, to obtain 90% of correctly displayed samples, we

require 1904 triangles instead of 5752 triangles, about 1/3 savings.

In what follows, we will refer to this streaming policy as visible.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000

R
a

ti
o

 o
f

P
ix

e
ls

 C
o

rr
e

c
tl
y
 D

is
p

la
y
e

d

Number of Triangles Received

Frustum and Backface Culling
Precomputing Visible Faces

Figure 3: Comparison of rendered image quality (average on

all bookmarks and starting position): the triangles are sorted

offline (dotted curve), or sorted online by distance to the view-

point (solid curve).

4.2.2 Prefetching by Predicting the Next Bookmark
Clicked

We can now use the precomputed, visibility-based streaming of

3D content for the bookmarks to reduce the amount of traffic needed.

Next, we propose to prefetch the 3D content from the bookmarks.

Any efficient prefetching policy needs to accurately predict users’

actions.

As shown, users tend to visit the bookmarked viewpoints more

often than others, except the initial viewpoint. It is thus natural to

try to prefetch the 3D content of the bookmarks.

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Previous recommendation clicked

N
ex

t
re

co
m

m
en

d
at

io
n

cl
ic

k
ed

Figure 4: Probability distribution of ’next clicked bookmark’

for Scene 1 (computed from the 33 users with bookmarks).

Numbering corresponds to 0 for initial viewport and 11 book-

marks; the size of the disk at (i, j) is proportional to the prob-

ability of clicking bookmark j after i.

Figure 4 shows the probability of visiting a bookmark (verti-

cal axis) given that another bookmark has been visited (horizon-

tal axis). This figure shows that users tend to follow similar paths

when consuming bookmarks. Thus, we hypothesize that prefetch-

ing along those paths would lead to better image quality and lower

discovery latency.

We use the following prefetching policy in this paper. We di-

vide each chunk sent by the server into two parts. The first part

is used to fetch the content from the current viewpoint, using the

culling streaming policy. The second part is used to prefetch con-

tent from the bookmarks, according to their likelihood of being

clicked next. We use the probabilities displayed in Figure 4 to de-

termine the size of each part. Each bookmark B has a probability

p(B|Bprev) of being clicked next, considering that Bprev was the

last clicked bookmark. We assign to each bookmark p(B|Bprev)/2
of the chunk to prefetch the corresponding data. We use the visible
policy to determine which data should be sent for a bookmark.

We denote this combination as V-PP, for Prefetching based on

Prediction using visible policy.

Figure 5: Example of how a chunk can be divided into fetching

what is needed to display the current viewport (culling), and

prefetching three recommendations according to their proba-

bility of being visited next.

4.2.3 Fetching Destination Bookmark

An alternate method to benefit from the precomputing visible tri-

angles at the bookmark, is to fetch 3D content during the “fly-to”

transition to reach the destination. Indeed, as specified in Section 3,

moving to a bookmarked viewpoint is not instantaneous, but rather

takes a small amount of time to smoothly move the user camera

from its initial position towards the bookmark. This transition usu-

ally takes from 1 to 2 seconds, depending on how far the current

user camera position is from the bookmark.

When the user clicks on the bookmark, the client fetches the vis-

ible vertices from the destination viewpoint, with all the available

bandwidth. So, during the transition time, the server no longer does

culling, but the whole chunk is used for fetching following visible
policy.

The immediate drawback of this policy is that on the way to the

bookmark, the user perception of the scene will be degraded be-

cause of the lack of data for the viewpoints in transition. On the

bright side, no time is lost to prefetch bookmarks that will never be

consumed, because we fetch only when we are sure that the user

has clicked on a bookmark. This way, when the user is not click-

ing on bookmarks, we can use the entire bandwidth for the current

viewpoint and get as many triangles as possible to improve the cur-

rent viewpoint. We call this method V-FD, since we are Fetching

the 3D data from the Destination using visible policy.

4.3 Comparing Streaming Policies
In order to determine which policy to use, we replay the traces

from the user study while simulating different streaming policies.

The first point we are interested in is which streaming policy leads

to the lower discovery latency and better image quality for the user:

culling (no prefetching), V-PP (prefetching based on probability

of accessing bookmarks), or V-FD (no prefetching, but fetch the

destination during fly-to transition) or combining both V-PP and

V-FD (V-PP+FD).

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9

R
a

ti
o

 o
f

P
ix

e
ls

 C
o

rr
e

c
t

D
is

p
la

y
e

d

Time (in s)

C only
V-FD
V-PP

V-PP+FD

Figure 6: Average percentage of the image pixels that are cor-

rectly rendered against time –for all users with bookmarks, and

using a bandwidth (BW) of 1 Mbps. The origin, t = 0, is the

time of the first click on a bookmark. Each curve corresponds

to a streaming policy.

Figure 6 compares the quality of the view of a user after his/her

first click on a bookmark. The ratio of pixels correctly displayed

is computed in the client algorithm, see also algorithm 1. In this

figure we use a bandwidth of 1 Mbps. The solid curve corresponds

to the culling policy. Clicking on a bookmark generates a user

path with less spatial locality, causing a large drop in visual quality

that is only compensated after 4 seconds. During the first second,

the camera moves from the current viewport to the bookmarked

viewport.

When the data has been prefetched according to the probability

of the bookmark to be clicked, the drop in quality is less visible (V-

PP curve). However, by benefiting from the precomputation of vis-

ible triangles and ordering of the important triangles in a bookmark

(V-FD) the drop in quality is still there, but is very short (approxi-

mately four times shorter than for culling). This drop in quality is

happening during the transition on the path. More quantitatively,

with a 1 Mbps bandwidth, 3 seconds are necessary after the click

to recover 90% of correct pixels.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1 2 3 4 5 6 7 8 9

R
a

ti
o

 o
f

P
ix

e
ls

 C
o

rr
e

c
t

D
is

p
la

y
e

d

Time (in s)

C only
V-FD
V-PP

V-PP+FD

Figure 7: Average percentage of the image pixels that are cor-

rectly rendered against time –for all users with bookmarks, and

using a bandwidth (BW) of 0.5 Mbps. The origin, t = 0, is the

time of the first click on a bookmark. Each curve corresponds

to a streaming policy.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
a

ti
o

 o
f

P
ix

e
ls

 C
o

rr
e

c
t

D
is

p
la

y
e

d

Time (in s)

V-FD
V-PP-FD

Figure 8: Same curve as Figures 6 and 7, for comparing stream-

ing policies V-FD alone and V-PP+FD. BW=2Mbps

Figure 7 showed the results of the same experiment with 0.5

Mbps bandwidth. Here, it takes 4-5 seconds to recover 85% of

the pixels with culling and V-PP, against 1.5 second for recovering

90% with V-FD. Combining both strategies (V-PP+FD leads to the

best quality.

At 1 Mbps bandwidth, V-PP penalizes the quality, as the curve

V-PP-FD) leads to a lower quality image than V-FD alone. This

effect is even stronger when the bandwidth is set to 2 Mbps (Figure

8). Both streaming strategies based on the pre-computation of the

ordering improves the image quality. We see here, that V-FD has

a greater impact than V-PP. Here, V-PP may prefetch content that

eventually may not be used, whereas V-FD only sends relevant 3D

content (knowing which bookmark has been just clicked).

We present only the results after the first click. For subsequent

clicks, we found that other factors came into play and thus, it is

hard to analyze the impact of the various streaming policies. For

instance, a user may revisit a previously visited bookmark, or the

bookmarks may overlap. If the users click on a subsequent book-

mark after a long period, then more content would have been fetched

for this user, making comparisons difficult.

To summarize, we found that exploiting the fact that bookmarked

viewpoints are frequently visited to precompute the visible faces

and sort them according to projected areas can lead to significant

improvement in image quality after a user interaction (clicking on

a bookmark). This alone can lead to 60% less triangles being sent,

with 1/3 of the triangles sufficient to ensure 90% of pixels correctly

rendered, compared to doing frustum/backface culling. If we fetch

these precomputed faces of the destination viewpoint this way im-

mediately after the click, during the “fly-to” transition, then we can

already significantly improve the quality without any prefetching.

Prefetching helps if the bandwidth is low, and fewer triangles can

be downloaded during this transition. The network conditions play

a minimum role in this key message – bookmarking allows precom-

putation of an ordered list of visible faces, and this holds regardless

of the underlying network condition (except for non-interesting ex-

treme cases, such as negligible bandwidth or abundance of band-

width).

5. CONCLUSION AND FUTURE WORK
In this work, we have shown the usefulness of 3D bookmarks for

easing navigation in a networked virtual environment. First, users

who benefit from the bookmarks took, on average, half the time

of user without bookmarks to complete the task of collecting coins

around the scene, even when the bookmarks were placed indepen-

dently of the coins. A large majority of users also expressed their

preference for the UIs with bookmarks. However, as the speed and

task efficiency of the user increase with bookmarks, clicking on a

bookmark decreases 3D data locality and the quality of the ren-

dered images lowers as well. We propose two streaming policies

that can benefit from the bookmarks by precomputing an ordering

of visible triangles for bookmarked viewpoints based on projected

area: one that prefetches based on previous navigation pattern, the

other fetches content during the fly-to transition to the bookmark

after a user click. The proposed streaming outperforms a policy

based only on frustum/backface culling computed during naviga-

tion.

One future work could be to optimize the chunk size allocated to

prefetching for higher bandwidth. A more challenging future work

could be to adapt the navigation to system conditions, e.g., slow-

ing down the fly-to to a bookmark when the bandwidth is lower, to

improve the rendering at the destination bookmark. Another adap-

tation could be to zoom out on the path to increase the perceptual

quality during transitions.

6. REFERENCES

[1] W. Ali, S. M. Shamsuddin, and A. S. Ismail. A survey of web

caching and prefetching. International Journal of Advances

in Soft Computing and its Application, 3(1):18–44, 2011.

[2] S. Burigat and L. Chittaro. Navigation in 3d virtual

environments: Effects of user experience and

location-pointing navigation aids. International Journal of

Man-Machine Studies, 65(11):945–958, 2007.

[3] N. Burtnyk, A. Khan, G. Fitzmaurice, and G. Kurtenbach.

Showmotion: camera motion based 3d design review. In

Proceedings of the 2006 symposium on Interactive 3D

graphics and games, pages 167–174. ACM, 2006.

[4] A. Carlier, V. Charvillat, and W. T. Ooi. A video timeline

with bookmarks and prefetch state for faster video browsing.

In Proceedings of the 23rd Annual ACM Conference on

Multimedia Conference, pages 967–970, Brisbane, Australia,

Oct. 2015. ACM.

[5] A. Carlier, G. Ravindra, and W. T. Ooi. Towards

characterizing users’ interaction with zoomable video. In

Proceedings of the 2010 ACM Workshop on Social, Adaptive

and Personalized Multimedia Interaction and Access,

SAPMIA ’10, pages 21–24, Firenze, Italy, 2010.

[6] A. Chan, R. W. H. Lau, and B. Ng. A hybrid motion

prediction method for caching and prefetching in distributed

virtual environments. In Proceedings of the ACM Symposium

on Virtual Reality Software and Technology, VRST ’01,

pages 135–142, Baniff, Alberta, Canada, 2001. ACM.

[7] W. Cheng and W. T. Ooi. Receiver-driven view-dependent

streaming of progressive mesh. In Proceedings of the 18th

International Workshop on Network and Operating Systems

Support for Digital Audio and Video, pages 9–14. ACM,

2008.

[8] J. Chim, R. W. Lau, H. V. Leong, and A. Si. CyberWalk: a

Web-based distributed virtual walkthrough environment.

Multimedia, IEEE Transactions on, 5(4):503–515, 2003.

[9] L. Chittaro and S. Burigat. 3d location-pointing as a

navigation aid in virtual environments. In Proceedings of the

working conference on Advanced visual interfaces, AVI 2004,

Gallipoli, Italy, May 25-28, 2004, pages 267–274, 2004.

[10] L. Chittaro and S. Venkataraman. Navigation aids for

multi-floor virtual buildings: A comparative evaluation of

two approaches. In Proceedings of the ACM symposium on

Virtual Reality Software and Technology, pages 227–235.

ACM, 2006.

[11] J. Eno, S. Gauch, and C. W. Thompson. Linking behavior in

a virtual world environment. In Proceedings of the 15th

International Conference on Web 3D Technology, pages

157–164. ACM, 2010.

[12] J. Gaillard, A. Vienne, R. Baume, F. Pedrinis, A. Peytavie,

and G. Gesquière. Urban data visualisation in a web browser.

In Proceedings of the 20th International Conference on 3D

Web Technology, Web3D ’15, pages 81–88, Heraklion, Crete,

Greece, 2015. ACM.

[13] R. Grigoras, V. Charvillat, and M. Douze. Optimizing

hypervideo navigation using a Markov decision process

approach. In Proceedings of the 10th ACM International

Conference on Multimedia, pages 39–48, Juan les Pins,

France, 2002.

[14] S.-S. Hung and D. S.-M. Liu. Using prefetching to improve

walkthrough latency: Research articles. Comput. Animat.

Virtual Worlds, 17(3-4):469–478, July 2006.

[15] J. Jankowski and S. Decker. A dual-mode user interface for

accessing 3d content on the world wide web. In Proceedings

of the 21st international conference on World Wide Web,

pages 1047–1056. ACM, 2012.

[16] J. Jankowski and M. Hachet. Advances in interaction with 3d

environments. Comput. Graph. Forum, 34(1):152–190, 2015.

[17] A. Khan, I. Mordatch, G. Fitzmaurice, J. Matejka, and

G. Kurtenbach. Viewcube: A 3d orientation indicator and

controller. In Proceedings of the 2008 Symposium on

Interactive 3D Graphics and Games, I3D ’08, pages 17–25.

ACM, 2008.

[18] S. Khemmarat, R. Zhou, D. K. Krishnappa, L. Gao, and

M. Zink. Watching user generated videos with prefetching.

Signal Processing: Image Communication, 27(4):343–359,

2012.

[19] T.-Y. Li and W.-H. Hsu. A data management scheme for

effective walkthrough in large-scale virtual environments.

The Visual Computer, 20(10):624–634, 2004.

[20] K. Liang, R. Zimmermann, and W. T. Ooi. Peer-assisted

texture streaming in metaverses. In Proceedings of the 19th

ACM International Conference on Multimedia, pages

203–212, Scottsdale, AZ, 2011. ACM.

[21] J. D. Mackinlay, S. K. Card, and G. G. Robertson. Rapid

controlled movement through a virtual 3d workspace. In

ACM SIGGRAPH Computer Graphics, volume 24, pages

171–176. ACM, 1990.

[22] C. Moerman, D. Marchal, and L. Grisoni. Drag’n go: Simple

and fast navigation in virtual environment. In 3D User

Interfaces (3DUI), 2012 IEEE Symposium on, pages 15–18.

IEEE, 2012.

[23] S. Park, D. Lee, M. Lim, and C. Yu. Scalable data

management using user-based caching and prefetching in

distributed virtual environments. In Proceedings of the ACM

Symposium on Virtual Reality Software and Technology,

pages 121–126, Banff, Canada, 11 2001.

[24] S. Rezzonico and D. Thalmann. Browsing 3D bookmarks in

BED. In Proceedings of WebNet 96 - World Conference of the

Web Society, San Francisco, California, USA, October 1996.

[25] R. A. Ruddle, A. Howes, S. J. Payne, and D. M. Jones. The

effects of hyperlinks on navigation in virtual environments.

International Journal of Human-Computer Studies,

53(4):551–581, 2000.

[26] B. Seo and R. Zimmermann. Quantitative analysis of

visibility determinations for networked virtual environments.

Journal of Visual Communication and Image Representation,

23(5):705–718, 2012.

[27] J. T. Todd. The visual perception of 3d shape. Trends in

cognitive sciences, 8(3):115–121, 2004.

[28] M. Varvello, S. Ferrari, E. Biersack, and C. Diot. Exploring

Second Life. IEEE/ACM Transactions on Networking (TON),

19(1):80–91, 2011.

[29] R. C. Zeleznik, A. S. Forsberg, and P. S. Strauss. Two pointer

input for 3d interaction. In Proceedings of the 1997

symposium on Interactive 3D graphics, pages 115–120.

ACM, 1997.

[30] Z. W. Zhao and W. T. Ooi. Joserlin: Joint request and service

scheduling for peer-to-peer non-linear media access. In

Proceedings of the 21st ACM International Conference on

Multimedia, MM ’13, pages 303–312, Barcelona, Spain, Oct.

2013.

[31] Z. Zhou, K. Chen, and J. Zhang. Efficient 3-D scene

prefetching from learning user access patterns. IEEE

Transactions on Multimedia, 17(7):1081–1095, July 2015.

	Introduction
	Related Work
	3D Bookmarks and Navigation Aids
	Prefetching in NVE
	Prefetching in Other Interactive Media

	Impact of 3D Bookmarks on Navigation
	Our NVE
	3D Bookmarks
	User Study
	Experimental Results
	Questionnaire
	Analysis of Interactions
	Discussion

	Impact of 3D Bookmarks on Streaming
	3D Model Streaming
	3D Bookmarks
	Visibility Determination for 3D Bookmarks
	Prefetching by Predicting the Next Bookmark Clicked
	Fetching Destination Bookmark

	Comparing Streaming Policies

	Conclusion and Future Work
	References

